2 00 1 Lax pair for the Adler ( lattice Krichever - Novikov ) System
نویسنده
چکیده
In the paper [V. Adler, IMRN 1 (1998) 1–4] a lattice version of the Krichever-Novikov equation was constructed. We present in this note its Lax pair and discuss its elliptic form.
منابع مشابه
Bäcklund Transformation for the Krichever-novikov Equation
The Krichever-Novikov equation u t = u xxx − 3 2u x (u 2 xx − r(u)) + cu x , r (5) = 0 (1) appeared (up to change u = p(˜ u), ˙ p 2 = r(p)) in [1] for the first time in connection with study of finite-gap solutions of the Kadomtsev-Petviashvili equation. The distinctive feature of the equation (1) is that, accordingly to [2], no differential substitution exists connecting it with other KdV-type...
متن کاملN ov 2 00 3 A new two - dimensional lattice model that is “ consistent around a cube ”
For two-dimensional lattice equations one definition of integrability is that the model can be naturally and consistently extended to three dimensions, i.e., that it is “consistent around a cube” (CAC). As a consequence of CAC one can construct a Lax pair for the model. Recently Adler, Bobenko and Suris conducted a search based on this principle and certain additional assumptions. One of those ...
متن کاملar X iv : h ep - t h / 92 10 08 3 v 1 1 5 O ct 1 99 2 QUASI - PERIODIC SOLUTIONS FOR MATRIX NONLINEAR SCHRÖDINGER EQUATIONS
The Adler-Kostant-Symes theorem yields isospectral hamiltonian flows on the dual˜g + * of a Lie subalgebrã g + of a loop algebrã g. A general approach relating the method of integration of Krichever, Novikov and Dubrovin to such flows is used to obtain finite-gap solutions of matrix Nonlinear Schrödinger Equations in terms of quotients of θ-functions.
متن کاملExact travelling wave solutions for the modified Novikov equation ∗
which was discovered in a symmetry classification of nonlocal PDEs with quadratic or cubic nonlinearity. By using the perturbation symmetry approach [7], Novikov found the first few symmetries and a scalar Lax pair for Eq. (1), then proved that it is integrable [9]. Hone and Wang [5] gave a matrix Lax pair for the Novikov equation and found its infinitely many conserved quantities, as well as a...
متن کاملct 2 00 2 Prolongation structure of the Krichever - Novikov equation
We completely describe Wahlquist-Estabrook prolongation structures (coverings) dependent on u, ux, uxx, uxxx for the Krichever-Novikov equation ut = uxxx−3uxx/(2ux)+p(u)/ux+aux in the case when the polynomial p(u) = 4u − g2u − g3 has distinct roots. We prove that there is a universal prolongation algebra isomorphic to the direct sum of a commutative 2-dimensional algebra and a certain subalgebr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002